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ABSTRACT 

Consider the regular and the conjugacy characters of S, as vectors in Eucli- 
dean space, with the standard inner product. As n grows, the angle between 
them tends to zero and the ratio of their lengths tends to one. The two 
characters have therefore asymptotically similar decompositions into irreduc- 
ible components. 

1. Introduction 

Any finite group G has the following two familiar representations on its group algebra 

(i) The (left) regular representation R: 

Rg (h) = gh (g, h ~ G). 

(ii) The conjugacy representation C: 

Cg(h)=ghg -l (g, hEG).  

Denote the corresponding characters by XR, XC. 
The vector space of complex class functions on G has an inner product: 

1 
(1.1) ( f ,  f2) = ~ f(g)f2(g). 
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THEOREM. Let Z~ "), Xb ") be the regular and the conjugacy characters of the 
symmetric group S,. Then 

(i) l im,_~ [[ X~ ") 1[/[[ Xb "~ [[ = I, 
(ii) lim,_o~ (Z~ "), Z~"))/[[ X~ ") I[" 11Z~ ") I[ = 1. 

Notice that the irreducible characters of a group form an orthonormal basis 
for the space of class functions with the inner product (1.1) [2, p. 223]. The 
above result may therefore be interpreted as follows: 

"For large n, the conjugacy and regular representations of S. have essentially 
the same multiplicities of irreducible components." 

This statement is informative since we know relatively little about the above 
multiplicities for the conjugacy representation of S, (unlike the case with the 
regular representation). A sample result is that those multiplicities are all 
positive, for n ~ 2 [3]. 

2. Proof of Theorem 

Let G be a finite group. Denote (for g E G): 

Co(g) = {h E G I gh = hg} (centralizer of g), 

g = (h-lgh [h ~G}  (conjugacy class ofg), 

= {g [geG} .  

Now define 

1 
f ( 6 )  = E - -  

The result stated above obviously follows from the following two propositions. 

PROPOSITION 1. For anyfinite group G, 

II zR I[ (zR, zc~ 1 

II zc II II z .  II. U Xc II 

PROPOSITION 2. 

lim f ( S . ) =  1. 
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(The proof of Proposition 2 is due to the first author.) 

PROOF OF PROPOSITION 1. Obviously (denoting by e the unit element of 

G): 

Z R ( g ) = { I G I ,  g = e ,  

O, g ÷ e ,  

Xc(g) = {CG(g)I = IGI / Ig l .  

Therefore, for any character X of G: 

1 
(XR,X) = ~ ZR (e) z(e) = z(e) 

(which is the degree of Z). In particular 

(XR, ZR) = (ZR, Zc) = IGI. 

On the other hand 

1 X z c ( g ) 2 =  1 ~ I G 1 2  
( Zc, Zc ) = I G I ~ ] G--'-I ~ I ~ l 2 

=lGI ~ 1 = I G I  ~ 1 = I G I f ( G ) .  
~ o  Igl 2 ~ Igl 

II zR II ( XR, Zc) 1 

II Zc II II zR II • II Zc II fv~-b-) 

Therefore 

as claimed. 

PROOF OF PROPOSITION 2. It is well-known that i fa  permutation g E S, has 

I1 (r,! r,) 
i > l  

[e.g. 4, p. 67]. 

(2.1) Igl - 
n! 

r~ cycles of length i (i = 1, 2 , . . . )  then its conjugacy class g consists of all 
permutations with the same sequence of cycle-lengths, and 
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Inspection shows that 

Igl . . . . . .  Ig't 
rt [I (ri! i',) rt i>2 

where g'~S,,_, . ,  has no 1-cycles (i.e. fixed points), but otherwise has the same 
cycle lengths as g. 

Therefore, denoting 

s" = { g ~ S .  I g has no fixed point}, 

g" = (~ I g ~ s . ' } ,  

we obtain 

1 
f ' ( s . )=  Y ~ - - ,  

~,~s; I g'l 

rl 

(by convention, f(So) = f'(S0) = 1). 
We want to bound f ' (S~),  through finding min{ I~'l: g ' E  S~' }. First assume 

that g ~ S" has maximal cycle-length m > 4. Obtain g~ ~ S" by breaking each 
m-cycle o fg  into an (m - 2)-cycle and a 2-cycle. Then, by (2.1) 

Igl = (r2 + rm)! 2'2+'-(r=_2 + rm)! (m - 2)r--2 +r- 

loall r2! 2';r,~ 2! (m -- 2)~-2rm! m'= 

=(r2+rmrm)(rm-2r+m rm) rm!(~)r" 
> 1  

since rm > 1, 2m - 4 > m.  
Similarly, if g ~ S'. has maximal cycle-length m -- 4, then by breaking each 

4-cycle into two 2-cycles we get 

l¢[ =(r2 + 2r4)! 2"l+2r'=(r2 + 2r41 (2r4)! > 1 

Ig~l #'2! 2r2r4! 4', \ r2 / r4! 
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since r4 > 1. 

We conclude so far that g ~ S~ with minimal  l g I must  have ri = r4 = r5 = 

° ° ° ~ 0 .  

Now let g~S: ,  have r~ cycles of  length i (i = 2, 3). Then 2r2 + 3r3 = n, and 

denoting 

3r3 
p - (o__<p  __< 1) 

n 

we get (defining, by continuity, x In x [x=O = 0) 

n! 
ln[g[ = I n  

r2! 2r2r3 ! 3"3 

= n In n + O(n) - [r2 In r2 + O(r2) + r3 In r3 + O(r3)] 

= 1 n l n n + O ( n )  > ½ n l n n + O ( n ) .  
2 

The number  ofconjugacy classes in S, is p(n),  the number  of  parti t ions o f n  for 

which we know [1, p. 316] 

l n p ( n ) < K v ~  (K = ~t v/ i)  

Therefore we obtain the bound  

(2.2) In f ' ( S . )  ~ In I ~q;, I - In min Igl < O ( v ~ )  - ½n In n - O(n)  < - n 
gEg', 

for n large enough, e.g. n > N. 

Fix k > N. Then, for n _-> 2k 

' f ' ( S D  " ~ e - "  i,(s,)<= + }. + 

,_o (:) ,_o (;) r-,<(;i 

Since, by definition, 

> '<2' f ' (S,) f (s . )  = ,_o (:) (n > k -  1) 

k - '  f ' ( s ' )  e-"  < ~ + O(n-k) .  

we obtain (first for k > N, and thus for any k >-_ 1) 
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k-,f,(sr) 
(2.3) f(S.)  = Y, + O(n-k)  

In particular, for k = I, we get f(S.)  = 1 + O(1/n). 

3. Remarks 

For any e > 0, let us define 

f , (s , , )= y, i~1 -,, 

f~(S. )=  E I g - '  

(k>___ 1). 

and in particular 

lim f~(S.) = 1 ( r e  > 0). 

Note that for e = 0 ,  fo(S.)=l , .C, l=p(n)--- .oo.  For 
Proposition 2. 

The asymptotic expansion (2.3) also implies 

COROLLARY 2. 

0<4~. < n / 2  by 

then 

e = 1 we get 

For the above characters Z~ "), Zb ") o f  S. ,  define p. > 1 and 

II x,~ "~ II = p.  II x~ "~ II ,  

( x~ "~, xb "~ > = II x~ "~ II • II xb "~ II cos ,~., 

1 
p. = 1 + ---; + O(n-3), 

n" 

From an e-version of the bound (2.2) we may get the following generaliza- 

tion of the asymptotic expansion (2.3): 

COROLLARY 1. For any e > 0 and k > 1, 

f~(S.) = Y. f[(Sr) + O(n-'k) 
r~O 
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v5 
4~. = -  + O ( n - z ) .  

n 

PROOF. F o r  k = 3, (2.3) gives  

2 
f ( S . )  = 1 + --~ + O ( n - 3 ) .  

U s e  p.-  ~ = cos ~.  = f ( S . )  - ~/2 ( P r o p o s i t i o n  1). 
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